Design and manufacture of a new metal profile to be used as an auxiliary frame for HINO trucks weighing up to six tons using the Finite Element Method MEF
DOI:
https://doi.org/10.53632/incitec.v1i1.81Keywords:
frame, MEF, LFRD, stresses, deformationAbstract
This research project consists of validating the most optimal material that supports its resistance and rigidity with a section section “Z” type, it must comply with the adaptation of the assembly as an auxiliary frame on the main chassis for the HINO brand truck of the 300 series. And that supports a maximum load of 6000 kgf. The company SIDEC S.A. imports two types of structural materials for its different products, which requires that it serve as technical support for its purchase and manufacture, and these are ASTM A-572 Grade 50 steel and ASTM a-572 Grade 65. To arrive at the optimal design, the methods such as analysis by calculations, LRFD (Load and Resistance factor design) were applied using the respective equations of Hooke’s law to determine the critical deformation and its safety factor, in order to compare the results with the MEF (finite element method), performing simulations and applying the von Mises distortion theory. The deformation, safety factor and stress results were obtained. In addition, to guarantee adequate resistance, a mathematical model was applied to a segment of the selected material of ASTM A-572 Gr. 64 steel, whose values are within the parameters indicated for this investigation. The results obtained with the analytical methods, simulations and finite elements, are compared to determine and select the most optimal material taking into account the economy, resistance and respective lightness.
Downloads
References
[2] R. D. Cook, D. S. Malkus, M. E. Plesha y R. J. Witt, Concepts and Applications of Finite Element Analysis, Fourth ed., University of Wisconsin-Madison: John Wiley & Sons, Inc., 2002.
[3] HINO, «HINO serie 300,» Hino Motors Sales México, 5 Enero 2018. [En línea]. Available: https://www.hino.com.mx/images/fichas-tecnicas-nuevas/ficha-716y816.pdf. [Último acceso: 2018].
[4] L. Guo-Bin y X. R.-J. Z. Nan, «Modeling and Static Structural Analysis of Finite Element for a Truck Crane’s Frame,» de International Conference on Mechanics and Civil Engineering (ICMCE 2014), Wuhan, China, 2014.
[5] T. Chandrupatla y A. Belegundu, Introduction to finite elements in engineering, Third ed., New Jersey: Prentice Hall, 2002.
[6] R. L. Norton, Diseño de máquinas - Un enfoque integrado, Cuarta ed., Naucalpan de Juárez: Pearson Educación de México, 2011.
[7] R. G. Budynas, Nisbett y J. Keith, Diseño en Ingeniería Mecánica de Shigley, 8va. ed., México, D. F.: McGraw-Hill/Interamericana, 2008.
[8] R. Goncalves, Introducción al análisis de esfuerzos, Segunda ed., R. Goncalves, Ed., Caracas: USB, 2002.
[9] S. Vinnacota, Estructuras de acero: comportamiento y LRFD, R. Del Bosque, Ed., México: McGraw-Hill, 2006.
[10] T. Galambos y M. I. Ravindra, «Proponed Criterion for Load and Resistance Factor Design of Steel Building Structures,» Universidad de Washington, St. Louis, 1976.
[11] Phione Limited, «Phione Limited the steel specialist,» 2018. [En línea]. Available: https://sites.google.com/a/phione.co.uk/espanol/products/general-structure-and-welding-steel/astm-structural-steel/astm-a-572. [Último acceso: 2018].
[12] F. J. Teller B., «Tipos de bastidores en los vehículos industriales,» Revista Técnica del Instituto de Investigación sobre Reparación de Vehículos, S.A., vol. I, nº 47, 2011.
[13] H. R. Galbarro, «Ingemecanica.com,» 2010. [En línea]. Available: http://ingemecanica.com/tutorialsemanal/tutorialn69.html. [Último acceso: 2017].
[14] F. W. Schuch, de Manual de la técnica del automovil, Tercera ed., Reverté, 1999.